Integration by Parts

Liming Pang

We have seen that by the Fundamental Theorem of Calculus, we can evaluate a given integral if we can find an antiderivative of the integrand function. But in general, it is not easy to find antiderivatives directly, so we need more techniques.

Theorem 1. (Integration by Parts)

$$\int f(x)g'(x) = f(x)g(x) - \int g(x)f'(x) \, dx$$

Proof. By the Leibniz Rule of differentiating a product of functions, we know

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

So f(x)g(x) is an antiderivative of f'(x)g(x) + f(x)g'(x),

$$\int f'(x)g(x) + f(x)g'(x) \, dx = f(x)g(x) + C$$

We then see

$$\int f(x)g'(x) \, dx = f(x)g(x) - \int g(x)f'(x) \, dx$$

Remark 2. Recall that given a differentiable function f, there is a corresponding differential df = f'(x)dx, so the abve theorem can also be written as

$$\int f(x) \, dg(x) = f(x)g(x) - \int g(x) \, df(x)$$

We can use the above theorem to find antiderivatives of product of functions. **Example 3.** Find antiderivatives of $f(x) = xe^x$.

$$\int xe^x dx = \int x(e^x)' dx$$
$$= xe^x - \int (x)'e^x dx$$
$$= xe^x - \int e^x dx$$
$$= xe^x - e^x + C$$

If you like to use the differential notation instead, you will get

$$\int xe^x dx = \int x de^x$$
$$= xe^x - \int e^x dx$$
$$= xe^x - e^x + C$$

Example 4. Compute $\int \frac{1}{x} \ln x \, dx$

$$\int \frac{1}{x} \ln x \, dx = \int (\ln x)' \ln x \, dx$$
$$= (\ln x)(\ln x) - \int \ln x(\ln x)' \, dx$$
$$= (\ln x)^2 - \int \frac{1}{x} \ln x \, dx$$

We see $\int \frac{1}{x} \ln x \, dx = \frac{1}{2} (\ln x)^2 + C$

We can also apply the method of Integration by Parts in evaluating definite integrals:

Theorem 5.

$$\int_{a}^{b} f(x)g'(x) \, dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} g(x)f'(x) \, dx$$

Proof. We have seen that f(x)g(x) is an antiderivative of f(x)g'(x)+f'(x)g(x). Then by the Fundamental Theorem of Calculus,

$$\int_{a}^{b} f(x)g'(x) + f'(x)g(x) \, dx = f(b)g(b) - f(a)g(a)$$

Example 6. Evaluate $\int_1^3 x \ln x \, dx$

$$\int_{1}^{3} x \ln x \, dx = \int_{1}^{3} \ln x \, d\frac{x^{2}}{2}$$
$$= \frac{x^{2}}{2} \ln x \Big|_{1}^{3} - \int_{1}^{3} \frac{x^{2}}{2} \, d \ln x$$
$$= \frac{9}{2} \ln 3 - \int_{1}^{3} \frac{x^{2}}{2} \frac{1}{x} \, dx$$
$$= \frac{9}{2} \ln 3 - \int_{1}^{3} \frac{x}{2} \, dx$$
$$= \frac{9}{2} \ln 3 - \frac{x^{2}}{4} \Big|_{1}^{3}$$
$$= \frac{9}{2} \ln 3 - 2$$